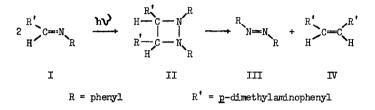
Tetrahedron Letters No. 21, pp. 1627-1628, 1965. Pergamon Press Ltd. Printed in Great Britain

A 1,2-DIAZETIDINE INTERMEDIATE

FROM PHOTOCYCLIZATION OF A SCHIFF BASE Scott Searles, Jr., and Robert A. Clasen Department of Chemistry, Kansas State University Manhattan, Kansas 66504

(Received 22 March 1965)


There have been two recent reports of the photocyclization of Schiff bases to phenanthridines,^{1,2} as well as 5,6-benzoquinolines.³ We also had independently observed phenanthridine formation on irradiation of several other Schiff bases, and have now isolated products from the irradiation of $\underline{N-p}$ -dimethylaminobenzylideneaniline (I) which indicate the intermediacy of the substituted 1,2-diazetidine (II).

Irradiation of a dilute, ethereal solution of (I) for sixty hours with a Hanovia "S" quartz mercury lamp gave <u>trans</u>-azobenzene (III) and <u>cis-</u> $h_{2}h_{1}^{*}$ -bis(dimethylamino)stilbene (IV), isolated in 35 and 25% yields, respectively. Also obtained was a 15% yield of a material, m.p. <u>ca</u>. 180° (subl.), tentatively identified as 9-dimethylaminophenanthridine on the basis of its elemental analysis, infrared and n.m.r. spectra; and 10% of (I) was recovered. The irradiation was carried out without exclusion of air.

Azobenzene was identified by its melting point (m.p. 66-7°, m.m.p. 66-7°, reported 66°⁴) and the identity of its infrared spectrum with that of an authentic sample. The l_1, l_1 -bis(dimethylamino)stilbene was identified by its melting point of 257-8° (reported 253- $l_1^{\circ 5}$) and by its infrared and n.m.r. spectra. This was confirmed by its identity with a sample of (IV) prepared by another, previously reported method.⁵

1627

While details concerning the mechanism of this process are still lacking, it seems reasonable to postulate cycloaddition of a photochemically excited molecule of (I) to another molecule of (I), in either an excited or ground state, in a head to head fashion to give (II) in an excited state. Such a molecule of (II) could then collapse to the observed products by a simple electron redistribution process.⁶ Further work on this and other photochemical reactions of Schiff bases is in progress.

<u>Acknowledgment</u>. - Financial assistance from the Faculty Research Fund of Kansas State University is gratefully acknowledged.

REFERENCES

- M.P. Cava and R.H. Schlessinger, <u>Tetrahedron Letters</u>, No. 31, 2109 (1964).
- G.M. Badger, C.P. Joshua, and G.E. Lewis, <u>Tetrahedron Letters</u>, No. 49, 3711 (1964).
- J.S. Shannon, H. Silberman, and S. Sternhell, <u>Tetrahedron Letters</u>, No. 12, 659 (1964).
- 4. 0. Meister, <u>Ber.</u>, <u>4</u>, 977 (1871).
- E. Campaigne and W.M. Budde, <u>Proc. Indiana Acad. Sci.</u>, <u>58</u>, 111 (1949);
 <u>C.A.</u>, <u>14</u>, 1478 (1950).
- For an analogous system see: E.T. Kaiser and T.F. Wulfers, J. <u>Am. Chem.</u> <u>Soc.</u>, <u>86</u>, 1897 (1964).